Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data.

نویسندگان

  • Enrico Lugli
  • Marcello Pinti
  • Milena Nasi
  • Leonarda Troiano
  • Roberta Ferraresi
  • Chiara Mussi
  • Gianfranco Salvioli
  • Valeri Patsekin
  • J Paul Robinson
  • Caterina Durante
  • Marina Cocchi
  • Andrea Cossarizza
چکیده

BACKGROUND Polychromatic flow cytometry (PFC) allows the simultaneous determination of multiple antigens in the same cell, resulting in the generation of a high number of subsets. As a consequence, data analysis is the main difficulty with this technology. Here we show the use of cluster analysis (CA) and principal component analyses (PCA) to simplify multicolor data visualization and to allow subjects' classification. METHODS By eight-colour cytofluorimetric analysis, we investigated the T cell compartment in donors of different age (young, middle-aged, and centenarians). T cell subsets were identified by combining positive and negative expression of antigens. The resulting data set was organized into a matrix and subjected to CA and PCA. RESULTS CA clustered people of different ages on the basis of cytofluorimetric profile. PCA of the cellular subsets identified centenarians within a different cluster from young donors, while middle-aged donors were scattered between these groups. These approaches identified T cell phenotypes that changed with increasing age. In young donors, memory T cell subsets tended to be CD127+ and CD95- whereas CD127-, CD95+ phenotypes were found at higher frequencies in people with advanced age. CONCLUSIONS Our data suggest the use of bioinformatic approaches to analyze large data-sets generated by PFC and to obtain the rapid identification of key populations that best characterize a group of subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Detection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis

Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...

متن کامل

Feature reduction of hyperspectral images: Discriminant analysis and the first principal component

When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...

متن کامل

Comparison of the Antioxidant Activity of Volatile Compounds of Traditional Herbal Waters Per Serving Cup

Herbal water is referred to the liquid obtained from the distillation of medicinal plants. Different parts of plants, such as flowers, fruits, leaves, seeds and roots have long been used to produce herbal waters. Herbal waters are used as dietary supplements and alternative medicine and are commonly used for flavoring in baking. Previous studies focused on the non-volatile constituents of herbs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cytometry. Part A : the journal of the International Society for Analytical Cytology

دوره 71 5  شماره 

صفحات  -

تاریخ انتشار 2007